Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Anthropocene ; 42:100381-100381, 2023.
Article in English | EuropePMC | ID: covidwho-2294868

ABSTRACT

With climate change, the COVID-19 pandemic, and ongoing conflicts, food systems and the diets they produce are facing increasing fragility. In a turbulent, hot world, threatened resiliency and sustainability of food systems could make it all the more complicated to nourish a population of 9.7 billion by 2050. Climate change is having adverse impacts across food systems with more frequent and intense extreme events that will challenge food production, storage, and transport, potentially imperiling the global population's ability to access and afford healthy diets. Inadequate diets will contribute further to detrimental human and planetary health impacts. At the same time, the way food is grown, processed, packaged, and transported is having adverse impacts on the environment and finite natural resources further accelerating climate change, tropical deforestation, and biodiversity loss. This state-of-the-science iterative review covers three areas. The paper's first section presents how climate change is connected to food systems and how dietary trends and foods consumed worldwide impact human health, climate change, and environmental degradation. The second area articulates how food systems affect global dietary trends and the macro forces shaping food systems and diets. The last section highlights how specific food policies and actions related to dietary transitions can contribute to climate adaptation and mitigation responses and, at the same time, improve human and planetary health. While there is significant urgency in acting, it is also critical to move beyond the political inertia and bridge the separatism of food systems and climate change agendas that currently exists among governments and private sector actors. The window is closing and closing fast.

3.
Lancet Planet Health ; 7(4): e329-e335, 2023 04.
Article in English | MEDLINE | ID: covidwho-2281077

ABSTRACT

The unprecedented economic and health impacts of the COVID-19 pandemic have shown the global necessity of mitigating the underlying drivers of zoonotic spillover events, which occur at the human-wildlife and domesticated animal interface. Spillover events are associated to varying degrees with high habitat fragmentation, biodiversity loss through land use change, high livestock densities, agricultural inputs, and wildlife hunting-all facets of food systems. As such, the structure and characteristics of food systems can be considered key determinants of modern pandemic risks. This means that emerging infectious diseases should be more explicitly addressed in the discourse of food systems to mitigate the likelihood and impacts of spillover events. Here, we adopt a scenario framework to highlight the many connections among food systems, zoonotic diseases, and sustainability. We identify two overarching dimensions: the extent of land use for food production and the agricultural practices employed that shape four archetypal food systems, each with a distinct risk profile with respect to zoonotic spillovers and differing dimensions of sustainability. Prophylactic measures to curb the emergence of zoonotic diseases are therefore closely linked to diets and food policies. Future research directions should explore more closely how they impact the risk of spillover events.


Subject(s)
COVID-19 , Communicable Diseases, Emerging , Animals , Humans , Pandemics , Zoonoses/epidemiology , Communicable Diseases, Emerging/epidemiology , Animals, Wild
5.
Nat Rev Dis Primers ; 7(1): 90, 2021 12 09.
Article in English | MEDLINE | ID: covidwho-1569253
6.
Agriculture ; 11(5):422, 2021.
Article in English | ProQuest Central | ID: covidwho-1241229

ABSTRACT

Dramatic improvements in data availability and quality are needed to meet the challenge of monitoring and analyzing food systems, so that appropriate policies and actions to improve human and planetary health can be identified and data-informed accountability mechanisms put in place to strengthen food systems governance. Studying food systems is complex due to diverse actors and interlinking processes that operate on multiple spatial and temporal scales, and their multiple outcomes, which may be subject to hidden feedback mechanisms and tradeoffs. However, descriptive research to characterize food system components and make comparisons across geography, income groups, and population groups is an important foundation. The first part of this article details a series of critical data gaps and limitations that are currently hindering food systems learning and accountability, also comparing these gaps across regions and income groups. The second part of the article introduces the Food Systems Dashboard, a new data visualization tool that aims to improve access to and usage of food systems-related data, thus strengthening the data value chain and better informing policies and actions intended to improve diets, nutrition, livelihoods, and environmental sustainability.

7.
Am J Clin Nutr ; 113(1): 7-16, 2021 Jan 04.
Article in English | MEDLINE | ID: covidwho-1066241

ABSTRACT

Global and local food system transformation is necessary in order to ensure the delivery of healthy, safe, and nutritious foods in both sustainable and equitable ways. Food systems are complex entities that affect diets, human health, and a range of other outcomes including economic growth, natural resource and environmental resiliency, and sociocultural factors. However, food systems contribute to and are vulnerable to ongoing climate and environmental changes that threaten their sustainability. Although there has been increased focus on this topic in recent years, many gaps in our knowledge persist on the relation between environmental factors, food systems, and nutritional outcomes. In this article, we summarize this emerging field and describe what innovative nutrition research is needed in order to bring about food policy changes in the era of climate disruption and environmental degradation.

SELECTION OF CITATIONS
SEARCH DETAIL